香蕉成人伊视频在线观看|一本一道波多野结衣av一区|一边吃奶一边添p好爽故事|国产福利视频|欧美亚洲国产片在线播放

返回首頁

拉格朗日插值基函數(拉格朗日插值基函數的特點)

來源:www.bjbfljj.cn???時間:2023-01-02 00:48???點擊:213??編輯:admin 手機版

1. 拉格朗日插值基函數的特點

一.線性插值(一次插值) 已知函數f(x)在區間[xk ,xk+1 ]的端點上的函數值yk =f(xk ), yk+1 = f(xk+1 ),求一個一次函數y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點。

首先,插值法是:利用函數f (x)在某區間中插入若干點的函數值,作出適當的特定函數,在這些點上取已知值,在區間的其他點上用這特定函數的值作為函數f (x)的近似值,這種方法稱為插值法.

其目的便就是估算出其他點上的函數值.

而拉格朗日插值法就是一種插值法.

2. 拉格朗日插值函數例題

拉格朗日插值法與牛頓插值法都是二種常用的簡便的插值法。但牛頓法插值法則更為簡便,與拉格朗日插值多項式相比較,它不僅克服了“增加一個節點時整個計算工作必須重新開始”的缺點,而且可以節省乘、除法運算次數。

同時,在牛頓插值多項式中用到的差分與差商等概念,又與數值計算的其他方面有著密切的關系。所以!!

從運算的角度來說牛頓插值法精確度高從數學理論上來說的話,我傾向于拉格朗日大神!!

話說拉格朗日當初不搞天文,不搞物理,專弄數學,估計是數學歷史上最偉大的數學家了,沒有之一。

3. 什么是拉格朗日插值基函數

一、拉格朗日插值法

是以法國十八世紀數學家約瑟夫·路易斯·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。

二、Lagrange基本公式:

拉格朗日插值公式,設,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計算時,其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點,因此,對有噪聲的數據,此方法不可取。

一般來說,對于次數較高的插值多項式,在插值區間的中間,插值多項式能較好地逼近函數y=f(x),但在遠離中間部分時,插值多項式與y=f(x)的差異就比較大,越靠近端點,其逼近效果就越差。

三、C++實現

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時變量,記錄拉格朗日插值多項式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

4. 拉格朗日插值基函數有何重要性質

拉格朗日插值公式

約瑟夫·拉格朗日發現的公式

拉格朗日插值公式線性插值也叫兩點插值,已知函數y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。

5. 拉格朗日插值基函數與插值節點有關,與函數值無關

拉格朗日插值公式(外文名Lagrange interpolation formula)指的是在節點上給出節點基函數,然后做基函數的線性組合,組合系數為節點函數值的一種插值多項式。

線性插值也叫兩點插值,已知函數y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1

其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。

線性插值計算方便、應用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩,否則線性插值的誤差可能很大。為了克服這一缺點,有時用簡單的曲線去近似地代替復雜的曲線,最簡單的曲線是二次曲線,用二次曲線去逼近復雜曲線的情形。[1]

6. 什么是拉格朗日插值基函數,它們是如何構造的

又稱平動點,一個小物體在兩個大物體的引力作用下在空間中的一點,在該點處,小物體相對于兩大物體基本保持靜止。

這些點的存在由瑞士數學家歐拉于1767年推算出前三個,法國數學家拉格朗日于1772年推導證明剩下兩個。每個穩定點同兩大物體所在的點構成一個等邊三角形。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 亚洲精品无码成人片久久不卡| 欧美激情视频一区二区三区免费 | 亚洲综合欧美在线一区在线播放| 国产猛男猛女超爽免费视频| 四虎永久在线精品免费观看| 国产一区二区三区av在线无码观看| 不卡av电影在线| 狠狠噜狠狠狠狠丁香五月| 亚洲欧美在线x视频| 午夜性又黄又爽免费看尤物 | 东北粗壮熟女丰满高潮| 人妻少妇-嫩草影院| 国产乡下妇女做爰| 亚洲成a人片77777群色| 亚洲一区二区三区无码影院| 日本高清视频www| 国产精品久久久久久无毒不卡| 无码乱人伦一区二区亚洲一| 日韩亚洲国产主播在线不卡| 人妻熟女αⅴ一区二区三区| 人妻体内射精一区二区三四| 直接观看黄网站免费视频| 少妇av一区二区三区无码| 亚洲午夜无码毛片av久久| 99亚洲精品卡2卡三卡4卡2卡| 精品国产乱码久久久久久婷婷| 四虎精品国产永久在线观看 | 黑巨人与欧美精品一区| 国产亚洲精品无码不卡| 国产成人av综合亚洲色欲| 精品少妇人妻av无码久久| 日本韩国亚洲欧美在线| 亚洲精品久久久久国色天香| 成人电线在线播放无码| 亚洲精品成人区在线观看| 首页 综合国产 亚洲 丝袜| 国产精品美女久久久久av爽李琼| 5x性社区免费视频播| 精品国产麻豆免费人成网站| 久久精品免费观看国产| 成人av无码国产在线观看|