香蕉成人伊视频在线观看|一本一道波多野结衣av一区|一边吃奶一边添p好爽故事|国产福利视频|欧美亚洲国产片在线播放

返回首頁

拉格朗日插值法例題(拉格朗日插值法例題視頻)

來源:www.bjbfljj.cn???時間:2023-01-07 14:31???點擊:75??編輯:admin 手機版

1. 拉格朗日插值法例題視頻

在數(shù)值分析中,拉格朗日插值法是以法國十八世紀(jì)數(shù)學(xué)家約瑟夫·拉格朗日命名的一種多項式插值方法。

許多實際問題中都用函數(shù)來表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應(yīng)的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。

2. 拉格朗日插值例子

構(gòu)造一組插值基函數(shù).”就是構(gòu)造一個函數(shù),這個函數(shù)在其中一點的值為1,其它點的值為0。這樣的話把n個這樣的函數(shù)加權(quán)加起來得到的函數(shù)就是在每個點上的值都是需要的了

3. 拉格朗日插值法原理

構(gòu)造函數(shù)4a+b+m(a^2+b^2+c^2-3)

對函數(shù)求偏導(dǎo)并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點的函數(shù)值和不可導(dǎo)點的函數(shù)值還有端點函數(shù)值進行比較

3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導(dǎo)數(shù)確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數(shù)再看

4. 拉格朗日插值法程序設(shè)計流程圖

拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個或多個條件所限制的 多元函數(shù)的 極值的方法。

這種方法將一個有n 個變量與k 個 約束條件的最優(yōu)化問題轉(zhuǎn)換為一個有n + k個變量的方程組的極值問題,其變量不受任何約束。

這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個向量的系數(shù)。

此方法的證明牽涉到偏微分, 全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

5. 利用拉格朗日插值法

線性插值也叫兩點插值,已知函數(shù)y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個一次多項式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1 其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)

6. 拉格朗日插值法實際應(yīng)用

拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數(shù)法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導(dǎo)=0

f對y的偏導(dǎo)=0

f對k的偏導(dǎo)=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。

7. 拉格朗日插值算法流程圖

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

8. 拉格朗日插值法算法

一、拉格朗日插值法

是以法國十八世紀(jì)數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函數(shù)來表示某種內(nèi)在聯(lián)系或規(guī)律,而不少函數(shù)都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應(yīng)的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。

二、Lagrange基本公式:

拉格朗日插值公式,設(shè),y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計算時,其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點,因此,對有噪聲的數(shù)據(jù),此方法不可取。

一般來說,對于次數(shù)較高的插值多項式,在插值區(qū)間的中間,插值多項式能較好地逼近函數(shù)y=f(x),但在遠(yuǎn)離中間部分時,插值多項式與y=f(x)的差異就比較大,越靠近端點,其逼近效果就越差。

三、C++實現(xiàn)

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時變量,記錄拉格朗日插值多項式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 粗大的内捧猛烈进出小视频| 国产精自产拍久久久久久蜜| 草裙社区精品视频播放| 欧洲欧美人成视频在线| 国产三级精品三级在线专区| 久久久久久亚洲精品| 亚洲乱理伦片在线观看中字| 亚洲一区二区三区波多野结衣| 国产乱妇乱子在线视频| 午夜理理伦电影a片无码| 日韩做a爰片久久毛片a片| 日韩精品欧美在线成人| 日本少妇裸体做爰高潮片| 国产精品高清一区二区不卡| 亚洲精品久久久无码一区二区| 国产人与禽zoz0性伦多活几年| 好男人社区资源| 国产精品中文久久久久久久| 国产乱子经典视频在线观看| 国内揄拍高清国内精品对白 | 人妻色综合网站| 亚洲乱码日产精品bd在| 无码人妻丰满熟妇啪啪网站 | 狠狠综合久久久久综合网站| 日韩成人免费无码不卡视频| 国产欧美精品一区二区三区四区| 久久亚洲色www成人| 少妇中文字幕乱码亚洲影视| 无码中文人妻视频2019| 午夜一区二区亚洲福利| 亚洲精品伊人久久久大香| 久久天天躁夜夜躁狠狠i女人| 99久久免费精品高清特色大片| 国产一区二区色婬影院| 久久国产美女精品久久| 2021国产精品国产精华 | 狠狠色狠狠色综合| 三级日本高清完整版热播| 纯爱无遮挡h肉动漫在线播放| 日日天日日夜日日摸| 精品国产福利一区二区|